Mathematical fancy dress

Everyone enjoys wearing a new outfit from time to time and so here we dress up a well-known friend from calculus in algebraic attire. Whether or not you approve the new look, there is at least an element of novelty in this month's problems.

Problem 1 Show that the open interval $(-1,1)$ is a group G under the binary operation o defined by the rule,

$$
\begin{equation*}
x \circ y=\frac{x+y}{1+x y} \tag{1}
\end{equation*}
$$

This is a nice exercise but there is a bit to check for we cannot take associativity for granted and even before that we need to verify that (1) truly represents a binary operation in that the output lies in $(-1,1)$.

This may all look rather mysterious, which leads to a second question.
Problem 2 Our group (G, \circ) is a copy of which very well-known abelian group?

Solution to Mathematical fancy dress

Problem 1 First we check that $(-1,1)$ is closed under the binary operation

$$
x \circ y=\frac{x+y}{1+x y} .
$$

Let $x, y \in(-1,1)$, and so $1+x y>0$. Then

$$
\begin{gathered}
x \circ y<1 \Leftrightarrow x+y<1+x y \Leftrightarrow x y-x-y+1>0 \\
\Leftrightarrow(x-1)(y-1)>0,
\end{gathered}
$$

which is true as both terms in the product are negative. Similarly

$$
\begin{gathered}
x \circ y>-1 \Leftrightarrow x+y>-1-x y \Leftrightarrow x y+x+y+1>0 \\
\Leftrightarrow(x+1)(y+1)>0,
\end{gathered}
$$

which is true as both terms are positive. It follows that $x \circ y \in(-1,1)$ and so - is a (commutative) binary operation. Next we check associativity of o. For $x, y, z \in(-1,1)$ we get:

$$
(x \circ y) \circ z=\frac{x+y}{1+x y} \circ z=\frac{\frac{x+y}{1+x y}+z}{1+\frac{(x+y) z}{1+x y}}=\frac{x+y+z+x y z}{1+x y+y z+z x} .(*)
$$

On the other hand, by commutativity we have $x \circ(y \circ z)=(y \circ z) \circ x=(z \circ y) \circ x$ and since the RHS of $\left({ }^{*}\right)$ is symmetric in the three variables, it follows that $(x \circ y) \circ z=x \circ(y \circ z)$ and hence (G, \circ) is a commutative semigroup. What is more, $x \circ 0=\frac{x+0}{1+(x)(0)}=x$, so that 0 is the identity element, whence (G, \circ) is a monoid. Finally, $-x$ is the inverse of x with respect to the operation \circ as $x \circ(-x)=\frac{x+(-x)}{1+x(-x)}=\frac{0}{1-x^{2}}=0\left(\right.$ as $\left.x^{2} \neq 1\right)$. Therefore (G, \circ) is indeed an abelian group.

Problem 2 The group (G, \circ) is isomorphic to $(\mathbb{R},+)$. A required isomorphism is tanh : $\mathbb{R} \rightarrow G$. The hyperbolic tangent function maps onto $(-1,1)$ as $\lim _{x \rightarrow \pm \infty} \frac{\sinh (x)}{\cosh (x)}= \pm 1$. Also $(\tanh (x))^{\prime}=\operatorname{sech}^{2}(x)>0$, and so $\tanh (x)$ is one-to-one. Finally $\tanh (x)$ is a group homomorphism as through applying a standard identity we see that

$$
\tanh (x+y)=\frac{\tanh (x)+\tanh (y)}{1+\tanh (x) \tanh (y)}=\tanh (x) \circ \tanh (y)
$$

