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Problem Set 1 Elementary properties and examples

A semigroup (S, ◦) is a set S with an assoiative binary operation ◦, whih
is often denoted by juxtaposition so that x(yz) = (xy)z for all x, y, z ∈ S. If

S has an identity element 1, then S is a monoid. For a semigroup S that is

not a monoid, the monoid S1 = S ∪ {1} is the semigroup S with 1 the adjoined

identity element ; if S is a monoid then we take S1 = S. The set of idempotents

of S (whih may be empty), is denoted by E(S). We write S ≤ T to denote

that S is a subsemigroup of the semigroup T .
For one-sided de�nitions, we often reord a one-sided version only, the alter-

nate notion being then impliitly de�ned using left-right symmetry.

1. A semigroup is left anellative if ax = ay implies x = y (a, x, y ∈ S).
(a) Show that every idempotent in a left anellative semigroup is a left

identity element.

(b) Show that a anellative (i.e. left and right anellative) semigroup S
an have at most one idempotent e whih is then the identity element of S.

2. A semigroup S is left simple if Sa = S for all a ∈ S. Prove that a

semigroup S is a group if and only if S is both left and right simple.

3. A right ideal I 6= ∅ of a semigroup S is a subset of S suh that IS ⊆ S;
we say that I is an ideal of S if I is both a left and a right ideal of S.

(a) Show that the smallest right ideal I ontaining a non-empty subset A of

S is I = AS1
.

(b) Similarly the ideal of I of S generated by A is I = S1AS1
.

Comment If A = {a} we speak of the prinipal right ideal aS1
and prinipal

ideal S1aS1
.

4. Let X be a set and de�ne TX as the semigroup of all mappings on X
under funtion omposition (omposed from left to right).

(a) Show that TX is a monoid that ontains the symmetri group SX .

(b) Show that the set C of onstant mappings in TX form a right zero

semigroup, meaning that ef = f for all e, f ∈ C.
() Show that α ∈ E(TX), the set of idempotents of TX if and only if α|Xα

is the identity mapping on Xα.
(d) The rank of an element α ∈ TX is |Xα|. Let Y be a ardinal number.

Show that I is an ideal of TX where

I = {α ∈ TX : |Xα| ≤ Y }.

5. For a non-empty subset A ⊆ S the subsemigroup of S generated by A,
denoted by 〈A〉, is the smallest subsemigroup of S that ontains A.

(a) Show that 〈A〉 exists and omprises the set of all produts of members

of A of �nite length.

(b) Let A = {a}. If 〈a〉 is �nite show that there exists positive integers r and
m suh that 〈a〉 = {a, a2, · · · , ar+m−1} with Ka = {ar, ar+1, · · · , ar+m−1} an
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abelian group of orderm. We all r and m the index and the period respetively

of the monogeni semigroup 〈a〉.
() Express the (unique) idempotent power at of 〈a〉 in terms of r and m.

(d) Hene show that Ka is indeed a yli group generated by at+1
.

6. Let X = {0, 1, · · · , r + m − 1} and onsider the monogeni semigroup

Sr,m = 〈a〉 of TX where a is the map a = (1, 2, · · · , r +m− 1, r) (meaning that

0a = 1, 1a = 2, 2a = 3, · · · , (r +m− 1)a = r).
(a) Show that 〈a〉 has index r and period m.

(b) Find all monogeni semigroups of order 11 generated by a symbol a suh
that a8 is an idempotent.

() Determine the subsemigroup of T12 generated by the mapping a =
(3, 3, 4, 5, 6, 7, 8, 6, 10, 11, 12, 12) by �nding its order and period. What are its

idempotents and subgroups?

7. Let S be the set of non-zero omplex numbers with produt a ◦ b = |a|b.
(a) Show that S is a semigroup.

(b) Find the idempotents of S.
() Show that S is right simple and left anellative.

8(a) Prove that a �nite subsemigroup U of a group is a group.

(b) Show that the previous result does not hold if we delete the word `�nite'.

9. Let X be a ountably in�nite set and let S be the set of one-to-one

mappings α : X → X with the property that |X \Xα| = ∞.

(a) Show that S is a subsemigroup of TX (known as the Baer-Levi semigroup

on X).

(b) Show that S is idempotent-free.

() Hene prove that S is right simple and right anellative, but is not left

simple nor left anellative.

10. (a) Let S and T be two semigroups. Show that S × T is a semigroup if

we de�ne the produt in the obvious way: (s1, t1)(s2, t2) = (s1s2, t1t2).
(b) Let L and R be a left zero semigroup and R a right zero semigroup (see

Question 4(b)). Show that the semigroup L×R onsists entirely of idempotents

(suh a semigroup is alled a band) in whih every pair of elements omprises a

mutually inverse pair.
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Problem Set 2 Homomorphisms and ongruenes

A semigroup homomorphism α : S → T is a mapping for whih (ab)α =
aαbα. The de�nition of monomorphism and isomorphism are also de�ned just

as for groups. We write S ∼= T if S and T are isomorphi.

1(a) Let α : S → T be a surjetive semigroup homomorphism. Let A denote

the set of all subsemigroups of S and let B denote the set of all subsemigroups

of T . The mapping φ : A 7→ Aφ (A ∈ A) is an inlusion-preserving map from

A onto B.
(b) Repeat (a), but let A and B represent the set of all ideals of S and T

respetively. Draw the orresponding onlusion.

() Show that omposition of two homomorphisms α : S → T and β : T → V ,
αβ : S → V , is also a homomorphism.

An equivalene relation σ on a semigroup S is a left ongruene on a semi-

group S if aσb implies that caσcb for all c ∈ S. The onept of right ongruene
is de�ned dually. We say that σ is a ongruene on S of aσb and cσd then acσbd
for all a, b, c, d ∈ S.

2. Prove that σ is a ongruene on S if and only if σ is both a left and a

right ongruene on S.

For any funtion α : S → T de�ne the kernel of α as ker(α) = {(x, y) ∈
S × S : xα = yα} and let Ker(α) denote the orresponding partition of S into

equivalene lasses. For a ongruene ρ on S, we denote the set of ρ-lasses of
S by S/ρ; the ρ-lass of a ∈ S is written as aρ.

3(a) Prove that the kernel of a homomorphism φ : S → T is a ongruene of

S.
(b) Show that S/ρ is a semigroup if we de�ne multipliation by representa-

tives of lasses, in that aρbρ = (ab)ρ.
() Show that if ρ is a ongruene then the natural map ρ♮ : S → S/ρ for

whih a 7→ aρ is a homomorphism and ker(ρ♮) = ρ.

4. First Isomorphism Theorem Let α : S → T be a surjetive homomorphism

of semigroups. Then ρ = ker(α) is a ongruene and there exists a unique

isomorphism ψ : S/ρ→ T suh that ρ♮ψ = α. Conversely, if ρ is any ongruene
on S then ρ♮ : S → T is a surjetive homomorphism of semigroups with kernel

ρ.

5. Seond Isomorphism Theorem Let σ, ρ be ongruenes on a semigroup S
suh that σ ⊆ ρ. Then

ρ/σ = {(xσ, yσ) ∈ S/σ × S/σ : (x, y) ∈ ρ}

is a ongruene on S/σ and (S/σ)/(ρ/σ) ∼= S/ρ.

6. Let G be a group.

(a) Prove that if ρ is a ongruene on G with identity e, then N = eρ is a

normal subgroup of G and aρb if and only if ab−1 ∈ N .
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(b) Conversely show that if N is a normal subgroup of G then the relation

(a, b) ∈ ρ if and only if ab−1 ∈ N is a ongruene on G suh that eρ = N .

7(a) Show that any intersetion of ongruenes on a semigroup S is a on-

gruene.

(b) Hene show that given any relation R ⊆ S × S, there is a smallest

ongruene R∗
on S that ontains R. We all R∗

the ongruene generated by

R.

For any relation R ⊆ S × S, let RS = R ∪ R−1 ∪ ι where ι is the equality

relation on S. Let a, b ∈ S and suppose that a = xcy, b = xdy, and cRSd for

some c, d ∈ S and x, y ∈ S1
. The passage from a to b, in either diretion, is an

elementary R-transition.

8. Prove that aR∗b (a, b ∈ S) if and only b an be obtained from a by some

�nite sequene of elementary R-transitions.

9. Let E be an equivalene relation on a semigroup S. Prove that the

following relation is the largest ongruene on S that is ontained in E;

E♭ = {(a, b) ∈ S × S : (∀x, y ∈ S1) (xay, xby) ∈ E}.

10. An element e ∈ S is a right identity (resp. right zero) if ae = a (resp.

ae = e) for all a ∈ S.
(a) Show that if S has a right identity e and a left identity f then e = f is

the unique identity of S.
(b) Repeat part (a) to prove the orresponding result for right and left zero

elements.

() On any non-empty set S with may de�ne a null semigroup also know as a

zero semigroup by hoosing e ∈ S and putting ab = e for all a, b ∈ S. Show that

any equivalene ρ on S is a ongruene and that S/ρ is also a null semigroup.
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Problem Set 3 Regularity and idempotents

1. The natural partial order on E(S), the set of all idempotents of a semi-

group S: de�ne e ≤ f i� ef = fe = e (e, f ∈ E(S)).
(a) Verify that ≤ de�nes a partial order on E(S).
(b) Show that e ≤ f if and only if e = efe.

A (lower) semilattie S is a poset (a partially ordered set) in whih eah pair

of elements a, b ∈ S has a greatest lower bound c = a ∧ b.

2. Show that any semilattie (S,∧) is a ommutative band (of idempotents)

with respet to the meet operation and that natural partial order on S equals

the partial order of the semilattie.

3. Show the onverse to the result of Question 2 by proving that any ommu-

tative band B is a semilattie in whih ab = a∧ b, where the meet is respet to

the natural partial order on B. We thus may identify the lasses of semilatties

and ommutative bands.

4. A member a ∈ S is alled regular if a has an inverse x ∈ S meaning that

a = axa and x = xax. The set of inverses of a is denoted by V (a). A semigroup

is alled regular if all of its members are regular.

(a) Show that every group G is a regular semigroup.

(b) Show that if axa = a then xax (a, x ∈ S) is an inverse of a, and so a is

regular.

() Show that TX is a regular semigroup.

(d) Show that a homomorphi image of a regular semigroup is regular.

(e) Show that an arbitrary diret produt S = Πi∈ISi of regular semigroups

is regular.

5(a) A semigroup S is a group if and only if S is regular and has a unique

idempotent.

(b) A �nite semigroup S is a group if and only if S is anellative.

() Give an example of a semigroup that is anellative but is not a group.

6. Any anellative ommutative semigroup S an be embedded in an abelian

group as follows. Let F = S1 ×S1
and de�ne ρ on F by (a, b)ρ(c, d) if and only

if ad = bc (a, b, c, d ∈ S1).
(a) Show that ρ is ongruene and that F/ρ is an abelian group.

(b) Show that S1
is embedded in F/ρ by the mapping whereby a 7→ (a, 1)ρ

(a ∈ S1).
() Carry out this proess on the positive integers under addition, and on

the positive integers under multipliation.

7(a) Show that if G is a group and E is a right zero semigroup (meaning

that ef = f for all e, f ∈ E) that G×E is a right group, whih is a right simple

and left anellative semigroup.
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We establish the onverse of (a), whih is a struture theorem for right

groups, as follows.

(b) Show that E = E(S) 6= ∅;

() E(S) is a right zero semigroup;

(d) Show that eb = b for every b ∈ S and e ∈ E(S);
(e) Se is a subgroup of S for every idempotent e;
(f) let f ∈ E(S) be �xed and let G be the group Sf . Prove that S ∼= G×E.

8. Dedue that S being a right group is equivalent to eah of the following

onditions:

(a) S is right simple and ontains at least one idempotent;

(b) the equation ax = b has a unique solution in S (a, b ∈ S);
() S is regular and left anellative.

9. Let I be an ideal of S and de�ne ρ by aρb if and only if a = b or a, b ∈ I.
Show that ρ is a ongruene on S. Suh a ongruene is alled a Rees ongruene

on S and is denoted by S/I. The lass I is then the zero element of S/I.

10(a) Cayley theorem for semigroups Let S be a semigroup and de�ne a

mapping Φ : S → TS by aΦ = ρa where ρa is the right translation by a de�ned

by xρa = xa. Show that Φ is a homomorphism of S into TS .
(b) By taking S to be a null semigroup, show that Φ is not neessarily a

monomorphism.

() Show that by replaing S by S1
so that Φ : S → TS1

, Φ beomes one-to-

one and so SΦ is an isomorphi opy of S in TS1
.
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Problem Set 4 Inverse semigroups

The partial transformation semigroup S= PT X . The members of S are the

funtions α : domα→ ranα, where domα, ranα ⊆ X . The semigroup operation

is relational omposition, whih in this instane is funtion omposition arried

out to the extent possible.

1(a) Show that for α, β ∈ PT X we have domαβ = (ranα ∩ domβ)α−1
and

ranαβ = (ranα∩domα)β.
(b) Let 0 be a new symbol not in X and onsider TX∪{0}. Prove that PT X

is isomorphi to the subsemigroup of all mappings in TX∪{0} that �x the point

0.
() If |X | = n, show that |TX | = nn| and |PT X | = (n+ 1)n.
(d) PT X is regular.

A regular semigroup S is an inverse semigroup if S is regular and the inverse

of every member of S is unique. We then denote the inverse of a by a−1
.

2. Let IX denote the subset of all one-to-one members of PT X . Show that

IX is an inverse monoid and identify its lattie of idempotents.

3. Prove that the following are equivalent for a regular semigroup S:
(i) E(S) is a semilattie;

(ii) every prinipal right ideal and every prinipal left ideal has a unique

idempotent generator;

(iii) S is an inverse semigroup.

4. Let S be an inverse semigroup. Show that the usual laws of inverses hold

in that for a, b ∈ S we have:

(a) a = (a−1)−1
and (ab)−1 = b−1a−1

.

(b) Also, for e, f ∈ E(S), Se∩ Sf = Sef , and Sa = Sa−1a, Sa−1 = Saa−1
.

The Cayley-style theorem for inverse semigroups is the Preston-Wagner the-

orem, whih states that any inverse semigroup S may be embedded in IS and

is proved as follows.

5. De�ne Φ : S → IS by aΦ = ρa (a ∈ S) where we de�ne ρa : Sa−1 →
Sa−1a by the rule that x 7→ xa (x ∈ Sa−1). Verify that that ρa and ρa−1

are

mutually inverse mappings of Saa−1
and Sa−1a onto eah other and onlude

that ρa ∈ IS and ρa−1 = ρ−1
a .

6. Prove that if ρa = ρb then a = b, so that Φ is one-to-one.

7. Show that Φ is a homomorphism and hene onlude the Preston-Wagner

theorem.

8. Lallement's lemma Let S be a regular semigroup and ρ a ongruene on

S. If a ∈ E(S/ρ) then aρe for some e ∈ E(S). Prove this by taking e = axa
where x ∈ V (a2).
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9. Use Lallement's lemma to prove that the homomorphi image of an inverse

semigroup is an inverse semigroup.

10. Orthodox semigroups A regular semigroup S is orthodox if E(S) is

a subsemigroup of S. In partiular all bands and all inverse semigroups are

orthodox. Prove that for a regular semigroup S the following are equivalent:

(i) S is orthodox;

(ii) if a, b ∈ S, a′ ∈ V (a), b′ ∈ V (b) then b′a′ ∈ V (ab);
(iii) every inverse x of an idempotent e is itself idempotent.

Furthermore, in any orthodox semigroup aea′, a′ea ∈ E(S) whenever a′ ∈
V (a) and e ∈ E(S).
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Problem Set 5 Green's relations I

Green's relations are �ve equivalanes on a semigroup based on the notion

of mutual divisibility of elements. They play no role in group theory sine there

they all oinide with the universal equivalene but they are important tools in

the desription and deomposition of semigroups.

Let S be any semigroup. We de�ne aRb if aS1 = bS1
and aLb if S1a = S1b

(a, b ∈ S). The equivalene H = L ∩R while the equivalene D =L∨R, where
the join is in the lattie of all equivalenes of S; that is D is the least equivalene

ontaining both L and R. Finally, aJ b if S1aS1 = S1bS1
. Note that aRb if

and only if there exist x, y ∈ S1
suh that ax = b and by = a with similar

remarks applying to L and J . The L-lass of a ∈ S will be denoted by La,

and similarly we have Ra, Ha, Da and Ja for the four other Green's relations.

We write La ≤ Lb if S1a ⊆ S1b and similarly Ra ≤ Rb if aS1 ⊆ bS1
and

S1aS1 ⊆ S1bS1
an be denoted by Ja ≤ Jb.

1. Show that L is a right ongruene and R is a left ongruene on S.

2. Prove that every left ongruene ρ ⊆ R ommutes with every right

ongruene λ ⊆ L, whih is to say that ρ ◦ λ = λ ◦ ρ, where ◦ denotes relational

omposition.

3(a) D ⊆ J .

(b) D = R ◦ L = L ◦ R.

() Conlude that aDb if and only if there exists c, d ∈ S suh that aLcRb
and aRdLb.

Comment It follows that any D-lass D of S an be represented by an

`egg-box' diagram: a retangular array of squares in whih the rows represent

R-lasses, the olumns L-lasses, and the square forming the intersetion of a

row and a olumn an H-lass. Indeed we shall show that all H-lasses within

the one D-lass have the same (non-zero) ardinality.

4. The set produt LR of an L-lass L and an R-lass R is ontained in a

single D-lass.

5. Show that Green's relations on TX are as follows:

(i) αLβ if and only if Xα = Xβ;
(ii) αRβ if and only if kerα = kerβ;
(iii)αHβ if and only if Xα = Xβ and kerα = kerβ;
(iv) αDβ if and only if rankα = rankβ;
(v) D = J .

6. Green's Lemma (right hand version) Let aRb (a, b ∈ S) and take s, s′ ∈
S1

suh that as = b and bs′ = a. Then the mappings ρs|La and ρs′ |Lb are

mutually inverse, R-lass preserving bijetions of La onto Lb and of Lb onto La

respetively.
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7. State the dual (left hand version) of Green's Lemma and hene dedue

that any two H-lasses within the same D-lass are equiardinal.

8. Miller and Cli�ord loation theorem For any two elements a, b ∈ S,
ab ∈ Ra ∩Lb if and only Ra ∩Lb ontains an idempotent. Prove this as follows.

(a) Use Green's Lemma to show that if ab ∈ Ra ∩ Lb then there exists

c ∈ Rb ∩ La suh that cb = b and that c = c2.
(b) Conversely take e ∈ E(S) ∩Rb ∩ La and show that eb = b and ae = a.
() Hene use the fat that R and L are left and right ongruenes respe-

tively to prove that aRabLb.

9. Use Miller and Cli�ord to prove that the following are equivalent for an

H-lass H of S.
(i) H ontain an idempotent;

(ii) there exist a, b ∈ H suh that ab ∈ H ;

(iii) H is a maximal subgroup of S.

10. Prove that any two group H-lasses He, Hf (e, f ∈ E) within the same

D-lass of a semigroup S are isomorphi.

11



Problem Set 6 Green's relations II

1. Regular D-lasses If one element a of a D-lass D of a semigroup S is

regular then all members of D are regular, in whih ase D is alled a regular

D-lass. Prove this as follows.
(a) Show that if an R- or an L-lass ontains a regular element, then that

lass ontains an idempotent.

(b) Hene prove the theorem stated above. [Hint: �rst prove the laim is

true for Ra and for La.℄

() Show that for any a ∈ S, the set of inverses V (a) ⊆ Da.

2. Inverse Loation of inverses theorem The H-lass H ontains an inverse

x of a if and only if Ra ∩ Lb and Rb ∩ La eah ontain an idempotent. In this

ase, x is the only inverse of a in Hb.

3(a) Prove that if L is a left ideal and R is a right ideal of S then RL ⊆ R∩L,
with equality if S is regular.

(b) If S is a right anellative semigroup without idempotents, then every

L-lass of S is trivial.

4. Let Y be a subset of X and Π a partition of X suh that |Y | = |X/Π|. Let
H be the H-lass of TX determined by (Π, Y ), meaning that α ∈ H i� kerα = Π
and Xα = Y . Then H is a group if and only if Y is a transversal of Π, in whih

ase H ∼= GY , the symmetri group on Y .

Partial order of Green's lasses We de�ne ≤L =≤ on the L-lasses of S by

La ≤ Lb if S1a ⊆ S1b; similarly we de�ne ≤R, ≤J and ≤H=≤L ∩ ≤R. Let

Reg(S) denote the set of regular elements of S. We also write a ≤L b if La ≤ Lb,

with a orresponding notation for the R, H and J partial orders on S.

5. Hall's lemma Let a, b ∈ Reg(S) with La ≥ Lb. Then for eah e ∈ E(La)
there exists f ∈ E(Lb) suh that e ≥ f in the natural partial order. [Hint: put

f = eb′b where b′ ∈ V (b).℄

6(a) Let U be a subsemigroup of S. Denote the Green's partial orders in

U and S by ≤L′
and ≤L et. Let a, b ∈ U with b ∈ Reg(U). Then Ra ≤R Rb

implies that Ra ≤R′ Rb.

(b) Let G denote any of L,R,H and let G′
denote Green's relation on U ≤ S.

Prove that G′ ⊆ G ∩ (U × U) with equality if U is a regular subsemigroup of S.

7. If a regular D-lass D of S forms a subsemigroup of S then D itself has

only one D-lass.

8. Prove that if S is �nite then D = J .

9. Let S be a semigroup that is the union of its subgroups. Prove that eah

D-lass D of S is a regular subsemigroup of S and the semigroup D onsists of

a single D-lass (of D).
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Let η denote the least semilattie ongruene on a semigroup S, whih is

evidently given by η = η∗0 where η0 = {(a, a2), (ab, ba) : a, b ∈ S}.

10(a) Show that in any semigroup D∗ ⊆ J ∗ ⊆ η.
(b) Let e, f ∈ E(S) for a regular semigroup S and let y ∈ V (ef). Show that

fye ∈ V (ef) ∩ E(S).
() Use part (b) to prove that in a regular semigroup, D∗ = J ∗ = η. [Hint:

show η0 ⊆ D∗
: in order to show that abD∗ba �rst take a = e, b = f .℄
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Problem Set 7: Minimal ideals and ompletely [0-℄simple semigroups

A semigroup S is simple if it has just one J -lass and is bisimple if S has

only one D-lass. If S is 0-simple if S has a zero 0, S2 6= {0} and the only ideals

of S are {0} and S. A 0-minimal ideal M of S ontains no other ideals of S
apart from M and {0} with M 6= {0}.

1(a) Show that S is simple if and only if S has only one ideal (whih is

neessarily S itself).

(b) Show that S is simple if and only if S = SaS for all a ∈ S.
() Show the ondition S2 6= {0} serves only to exlude the two-element null

semigroup from the lass of 0-simple semigroups.

2. The semigroup S of part (b) below has a single J -lass but D is the

equality relation.

(a) Show that if a semigroup S is anellative without identity there is no

pair of elements e, a ∈ S suh that ea = a or ae = a. Dedue that in S, the
D-relation is trivial (i.e, equals the identity relation).

(b) Show that with respet to matrix multipliation:

S = {

[

a 0
b 1

]

: a, b ∈ R
+},

is anellative without identity.

() Show that J is the universal relation on S.

3(a) Show that a semigroup S either has no minimal ideals or possesses a

unique minimal ideal K known as the kernel of S.
(b) If a semigroup S has a kernel K, then K is a simple semigroup.

() Show that any �nite semigroup has a simple kernel.

(d) S is 0-simple if and only ifSaS = S for every a ∈ S \ {0}.

4. By a 0-minimal ideal M of S we mean that M is an ideal of S, M 6= {0},
and that M ontains no ideals of S other than {0} and itself. Prove that if M
is a 0-minimal ideal of S then either M2 = {0} or M is a 0-simple semigroup.

5. If I, J are ideals of S suh that I ⊆ J and there is no ideal of S lying

stritly between I and J , then J/I is either 0-simple or null.

6. Prove that if Ja ∈ S/J then either Ja is the kernel of S or the set

I = {x ∈ S : Jx < J} is an ideal of S (and hene of J(a) = S1aS1) and hene

the fator J(a)/I is either 0-simple or null.

Comment : The semigroups K and J(a)/I(a) are alled the prinipal fators

of S. A semigroup is alled semisimple in none of its prinipal fators are null.

A prinipal fator J/I an be thought of as the J -lass J together with 0 and

for any a, b ∈ J , the produt of a and b is ab if ab ∈ J and is 0 otherwise.

A 0-simple semigroup S is alled ompletely 0-simple if S ontains a primi-

tive idempotent e, whih means e 6= 0 and f ≤ e (e, f ∈ E(S)) then f ∈ {0, e}.
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A simple semigroup is ompletely simple if S0
is ompletely 0-simple. A semi-

group S is ompletely regular if every element a has an inverse x with whih it

ommutes.

7(a) Prove that S is ompletely regular if and only if S is a union of its

subgroups.

(b) Prove that eahD-lass of a ompletely regular semigroup is a ompletely

simple semigroup and a union of isomorphi groups.

8. Let S be a ompletely regular semigroup.

(a) Show that J is a ongruene on S and that S/J is a semilattie;

(b) Hene dedue that J = η, the least semilattie ongruene on S.

9. Show that any simple ompletely regular semigroup is ompletely simple.

A semigroup S is alled a semilattie of semigroups of type T if there is

a ongruene ρ on S suh that S/ρ is a semilattie and eah lass aρ is a

subsemigroup of S of type T. (Sine S/ρ is a band, it follows that all ρ lasses

aρ are subsemigroups of S as (aρ)2 = a2ρ = aρ.)

10. Prove that D = J in any ompletely regular semigroup S and that S is

a semilattie of ompletely simple semigroups.

15



Problem Set 8

Let Y be a semilattie and let {Sα : α ∈ Y } be a olletion of disjoint

semigroups of the same type T , indexed by Y . Suppose that for eah α, β ∈ Y
suh that α ≥ β there is a homomorphism φα,β : Sα → Sβ suh that:

(i) φα,α is the identity mapping of Sα;
(ii) φα,βφβ,γ = φα,γ for every α, β, γ ∈ Y with α ≥ β ≥ γ. We then de�ne

an assoiative produt on S = {Sα : α ∈ Y } by

aα ◦ bβ = (aαφα,αβ)(bβφβ,αβ); aα ∈ Sα, bβ ∈ Sβ .

1. Show that the following are equivalent:

(i) S is regular and every idempotent is entral (meaning that ea = ae for

all e ∈ E(S), a ∈ S);
(ii) every D-lass of S has a unique idempotent;

(iii) S is a semilattie of groups;

(iv) S is a strong semilattie of groups.

2. Show that a semigroup S is a semilattie of groups if and only if

(∀a, b ∈ S)(∃x, y ∈ S) : (a = axa) ∧ (ab = bya).

3. Prove that a ommutative semigroup S is regular if and only if S is a

strong semilattie of abelian groups.

4. A semigroup S is alled a retangular band if it satis�es a = aba (∀a, b ∈
S). Show this ondition is equivalent to be nowhere ommutative, meaning that

ab = ba implies a = b.

5(a) Let L,R be non-empty sets and de�ne a produt on L×R by (a, b)(c, d) =
(a, d). Verify that this produt is that of a retangular band.

(b) Conversely show that any retangular band is isomorphi to a retangular

band of the type desribed in (a).

6. Prove that any band is a semilattie of retangular bands.

7. We say that 〈X,R〉 is a presentation for semigroup S if X is a generating

set of S and S = FX/ρR where ρR is the ongruene on the free semigroup FX

generated by the set of pairs R ⊆ X × X . We write x = 1 (resp. x = 0) to
denote the fat that xa = ax = a (resp. xa = ax = x) ∀ a ∈ S.

Show that the semigroup de�ned by the presentation 〈x, y|xyx = 1〉 is a

group isomorphi to the integers under addition.

8. The biyli monoid Let M = 〈a, b|ab = 1〉.
(a) Let S = 〈α, β〉, where α, β ∈ TN0

are the mappings de�ned by nα =
n+ 1, nβ = max{n− 1, 0} for all n ∈ N

0
. Show that αβ = 1 but that βα 6= 1.

Dedue that S is a homomorphi image of M .

16



(b) Show that any member of S, and hene ofM , an be uniquely expressed

in the form bman. Dedue that S is a faithful representation of M .

9(a) For M as in Question 8, show that

bkal · bman = biaj , where i = k +m−min{l,m}, j = l + n−min(l,m).

(b) bman ∈ E(M) if and only if m = n.

10 (a) Show that the R-and L-lasses of M are respetively the sets of the

form Rbi = {biaj : 0 ≤ j} i ≥ 0}, Laj = {biaj : 0 ≤ i} j ≥ 0 and that H-lasses

are all singletons. Conlude that M is a bisimple monoid.

(b) Show that M is an inverse semigroup and that the semilattie of idem-

potents of M is an in�nite desending hain.

17



Problem Set 9 Completely 0-simple semigroups

Let S be a semigroup with zero 0. Then e ∈ E(S) is primitive if e is 0-
minimal meaning that if f ∈ E(S) with f ≤ e then f = 0 or f = e. A

semigroup S is ompletely 0-simple if S is 0-simple with a primitive idempotent.

A semigroup is ompletely simple if it simple with a primitive idempotent.

1. Let S be a �nite 0-simple semigroup.

(a) Show that S is ompletely simple.

(a) Show that S is regular.

2. Continue with the �nite 0-simple semigroup of Question 1, with non-zero

D-lass D.

(a) Use the extended right regular representation of S in TS1
to prove that

if a, b ∈ D then either ab = 0 or aRabLb in S.
(b) Dedue that if ab 6= 0 then La ∩Rb is a group.

Index the rows and olumns of D by I and Λ respetively and without loss

of generality assume that (1, 1) ∈ I × Λ with H1,1 a group. For eah i ∈ I and

λ ∈ Λ hoose a �xed ri ∈ Hi,1 and qλ ∈ H1,λ.

3(a) Prove that the mapping whereby a 7→ riaqλ de�nes a bijetion φi,λ :
H1,1 7→ Hi,λ.

(b) Dedue from part (a) that eah x ∈ Hi,λ an be represented by a triple

(a; i, λ) where a ∈ H1,1 and x = riaqλ.
() Let y ∈ Hj,µ say, with representation (b; j, µ). By identifying eah of

x and y with their representation triple as in part (b), show that, for some

c ∈ H1,1,

xy = (a; i, λ)(b; j, µ) = (c; i, λ).

Note If xy = 0, whih ours if and only if Hj,µ is not a group, we take c = 0
and agree that (0; i, λ) represents the zero of S for all (i, λ) ∈ I × Λ.

Rees matrix semigroups Let I,Λ be index sets and let G0
be a group with

adjoined zero 0. (We all G0
a group with zero). Let P = (pλ,i) be a Λ × I

matrix with entries from G0
. The Rees matrix semigroup with sandwih matrix

P is the set S =M0[G; I,Λ, P ] where:

S = {(a; i, λ) : a ∈ G0, i ∈ I, λ ∈ Λ} ∪ {0},

with produt

(a; i, λ)(b; j, µ) = (apλjb; i, µ)

with the understanding that (0; i, λ) = 0 for all i ∈ I, λ ∈ Λ and that any

produt involving 0 is itself 0.

4(a) Prove that a Rees matrix semigroup S is indeed a semigroup.

(b) Show that S is regular if and only if P is regular in the sense that every

row and olumn of P ontains a non-zero entry.

18



() Conlude that every �nite 0-simple semigroup is isomorphi to a regular

Rees matrix semigroup M0[H1,1; I,Λ, P ].

5. Let R = Re denote the R-lass of a primitive idempotent of an arbitrary

ompletely 0-simple semigroup S.
(a) Let b ∈ eS and write e = xby (why is that justi�ed?). Show that

f = byexe ∈ E(S) with f ≤ e.
(b) Show that xfby = e and hene dedue that f = e, using the fat that e

is a primitive idempotent.

() Hene prove that R ∪ {0} is the right ideal eS of S.
(d) Furthermore, dedue that R ∪ {0} is a 0-minimal right ideal of S.

6. Continue under the hypotheses of Question 5.

(a) Prove that for any x ∈ S, Rx ∪ {0} = c(R ∪ {0}) = ceS for some c ∈ S.
(b) Prove that Rx ∪ {0} is a minimal right ideal for every x ∈ S

7(a) Show that any ompletely 0-simple semigroup S is regular and 0-
bisimple (with a non-zero D-lass D).

(b) Moreover, for a, b ∈ D, either aRabLb or ab = 0.
() Conlude that a semigroup S is ompletely 0-simple if and only if S is

ismorphi to some regular Rees matrix semigroup.

8. It is always possible to represent a ompletely 0-simple semigroup S =
M0[G; I,Λ, P ] so that a given row λ and olumn i of P onsists entirely of 0
and e, the identity element of the group G.

9. Verify that any ompletely 0-simple semigroup S has the following prop-

erties:

(i) every non-zero idempotent is primitive;

(ii) H is a ongruene on S;
(iii) any non-trivial homomorphi image of S is ompletely 0-simple.

10. A ompletely 0-simple inverse semigroup is alled a Brandt semigroup.

A semigroup is Brandt if and only if S is isomorphi to a Rees semigroup of the

form M0[G; I, I,∆] where ∆ is the I × I identity matrix.
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Problem Set 10 Properties of ompletely 0-simple semigroups

1. Prove that a regular semigroup S has all non-zero idempotents primitive

if and only if S is a 0-diret union of ompletely 0-simple semigroups.

[Hint: Suppose that {0} 6= Jf ≤ Je (e, f ∈ E). Then f = xey say; put

g = eyfxe and show that g = e.℄

2. Show that the following are equivalent for a regular semigroup S:
(i) S is ompletely simple;

(ii) aba = a implies bab = b for all a, b ∈ S;
(iii) S is weakly anellative, meaning that ax = bx and ya = yb for some

x, y ∈ S implies that a = b.

3. A ompletely simple semigroup S is orthodox if and only if S is a retan-

gular group, meaning a diret produt of a group and a retangular band.

4. A ompletely 0-semigroup with trivial maximal subgroups is alled a 0-
retangular band. Show that S is a 0-retangular band if and only if S has a

zero 0 and satis�es the two onditions:

(i) xyx = x or xyx = 0 for all x, y ∈ S;
(ii) xSy = {0} implies x = 0 or y = 0.

Misellaneous exerises

5. Show that eah of the following binary operations are assoiative on R
>0
,

the set of positive real numbers.

(i) x ◦ y =
√

x2 + y2.
(ii) x ◦ y = xy

x+y .

(iii) x ◦ y = ln(ex + ey − 2).

6. Let S be a semigroup and f : S → S any permutation of S. We denote

the binary operation of S by + without assuming that S is ommutative. De�ne

a binary operation ◦ on S by

x ◦ y = f−1(f(x) + f(y)).

(a) Prove that (S, ◦) is a semigroup.

(b) Show that f : (S, ◦) → (S,+) is an isomorphism.

() Show that eah of the three operations of Question 5 is of this type.

The free semigroup FX on a setX is the set of all words or strings x1x2 · · ·xn
(n ≥ 1) where xi ∈ X .

7(a) Show that FX is free on X in the algebrai sense that if S is any

semigroup and α : X → S is any funtion then there is a unique homomorphism

φ : FX → S suh that ιφ : X → S is equal to α, where ι : X → FX is an

embedding of X into FX .

(b) Prove that any semigroup is a homomorphi image of some free semi-

group.

20



() Show that FX is unique in that if G is another semigroup with the

de�ning property of part (a), then FX and G are isomorphi.

8. Let φ : S → T be a surjetive homomorphism from a �nite semigroup

and let G be a subgroup of T. Let U be a subsemigroup of S of least ardinal

suh that Uφ = G. Prove that U is a subgroup of S.

9. Generalization of Lallement's Lemma due to T.E. Hall (Set 4 Question

8) Let φ : S → T be a surjetive homomorphism from a regular semigroup S.
Suppose that (c, d) ∈ V (T ). Then there exists (a, b) ∈ V (S) suh that aφ = c
and bφ = d. Prove this as follows.

(a) Take x, y ∈ S suh that xφ = c and yφ = d and (xyxy)′ ∈ V (xyxyx).
Put a = xy(xyxy)′yx, b = y(xyxy)′xy. Show that b ∈ V (a).

(b) Show that (xyxy)φ ∈ V ((cd)2) = V (cd) and that a and b are the required
elements of S that satisfy our laim.

() Prove that this result implies Lallement's lemma.

10. Let α, β : (Z,+) → T be two semigroup homomorphisms suh that

nα = nβ for all n ≥ 1. Prove that α = β.
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Hints for Problems

Problem Set 1

2. For the onverse, �rst use left and right simpliity to show that S is a

monoid.

5() Show you are after the least integer p ≥ r suh that m|p.
(d) at+1

is a generator of Ka.

Problem Set 2

1(a) For U ≤ T , show that Uα−1 ≤ S and (Uα−1)α = U .

Problem Set 3

3. (iii) implies (i) (iii) implies (i). Let e, f ∈ E(S) and x = (ef)−1
then xe

and fx are both inverse to ef . Now show x = x2 and then x = ef . Dedue

ef, fe ∈ E(S) and �nally that ef = fe.
7(f) Show that eah a ∈ S has a unique right identity element e and then

use the mapping whereby a 7→ (af, e).
10. (ii) implies (iii). Sine xe, ex ∈ E(S) it follows from the given property

that ex2e ∈ V (xe2x). But x = xe2x, whih is inverse to ex2e, and thus

x = x(ex2e)x = (xex)(xex) = x2.

(iii) implies (i). Let e, f ∈ E(S) and take x ∈ V (ef). Show that ef ∈ V (fxe)
and fxe ∈ E(S).

Problem Set 5

4. Use the fat that L and R are right and left ongruenes respetively.

10. A required isomorphism is x 7→ a′xa where a′a = f .
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Problem Set 6

2. In the reverse diretion, show and then use that ρa de�nes a bijetion of

Lb onto La.

7. Apply Question 6(b) to the subsemigroup D.

8. If aJ b we may write a and b in the forms a = (ux)na(yv)n and b =
(xu)nb(vy)n and n may be hosen so that a(yv)n = a; and a = (ux)na, b =
(xu)nb = b(vy)n. Put c = xa show that aLcRb.

Problem Set 7

9. Suppose that e, f ∈ E(S) with f ≤ e. Take z, t ∈ S suh that e = zft.
Put x = ezf and y = fte. Show xfy = e and ex = xf = x, fy = ye = y. Take
x ∈ Hg (g ∈ E(S)). Tthere exists x∗ ∈ Hg suh that xx∗ = x ∗ x = g. Show

g = gf = f and so e = f .
10. Make use of Questions 6 and 9.

Problem Set 8

Problem Set 9

7. Show �rst that aSb 6= 0 for all a, b ∈ S. The use Question 6 to show that

aRcLb.
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Answers to the Problems

Problem Set 1

6. (b) S8,4 and S4,8. () 〈a〉 = S4,3. The idempotent of 〈a〉 is a6. Ka =
{a4, a5, a6 = e} ∼= Z3.
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